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In this paper, the computation of quality factors, by exploiting surface impedance boundary conditions and non-linear eigenvalue
solvers, is presented. In the last few years, the accurate calculation of losses and resonance frequencies of superconducting cavities
has become a central part in the design of high-performance particle accelerators. However, solving London’s equations in the
superconductor is computationally impossible, since the material penetration depth is many orders of magnitude smaller than the
resonator dimensions. Therefore, it is mandatory to simulate the behaviour of the material by taking advantage of a surface impedance
boundary condition (SIBC). Unfortunately, when losses are taken into account in the superconducting material, the SIBC introduces
a square-root operator in the corresponding eigenvalue formulation. Thus, the use of a non-linear eigenvalue solver is required. After
reviewing some theoretical aspects, this paper presents a natural solution to couple a SIBC formulation with a non-linear eigenvalue
solver. It finally concludes by discussing some numerical results.

Index Terms—Cavity resonator, non-linear eigenvalue problem, superconductivity, surface impedance boundary condition.

I. INTRODUCTION

THE ACCURATE computation of resonance frequencies
and quality factors of superconducting resonators is of

paramount importance in particle accelerators design. This
higher precision necessitates a more accurate description of
superconducting screening currents than the classical perfect
electric conductor (PEC) approximation. According to the two-
fluid model coupled with London’s equations [1], a supercon-
ducting material will introduce losses (even if they are small)
and a frequency shift (compared to a PEC approximation) in
the resonator. These two phenomena must be taken into account
for two main reasons. First, the accelerating cavities have to
be tuned with a high precision, requiring thus the accurate
computation of eigenmodes. Second, the thermal load induced
by the losses has the be accurately estimated.

II. TIME-HARMONIC LONDON’S EQUATIONS

The electromagnetic behaviour of an ideal superconductor
is described by the London equations. According to the first
London equation, expressed in a time-harmonic framework, the
electric field e and the electrical current density j are related
by [1]:

j =
(
µ0λ

2
L<(ω)

)−1
e, (1)

where  is the imaginary unit, µ0 is the magnetic permeability
in vacuum, λL is the London penetration depth and ω is the
angular frequency1. By defining

σs =
(
µ0λ

2
L<(ω)

)−1
, (2)

it becomes clear that (1) is nothing but a local circuit law for an
inductor. Furthermore, it can be shown that the second London
equation reduces to the time-harmonic Faraday law. Therefore,
the classical electromagnetic theory can be used, albeit with

1In this paper, the time-harmonic convention is eωt, with t being the time.

a new definition of the conductivity. Let us finally notice that
the real part operator is mandatory in a time-harmonic context.
Indeed, since ω can be complex, its imaginary part will lead
to nonphysical losses in (2) if the real part operator is omitted.

III. TWO-FLUID MODEL

The previous description of superconductivity is only valid
at absolute zero temperature. For higher values2, the two-fluid
model suggests that two families of charge carriers exist in
the material [1]: the super carriers (propagating without losses
in the medium) and the normal carriers (responsible of the
losses), their proportion being a function of the temperature.
The existence of normal carriers can simply be taken into
account by adding a real part to the conductivity [1]:

σ = σs + σn =
(
µ0λ

2
L<(ω)

)−1
+ σn, (3)

where σn is a real value which can be derived from the Drude
model.

IV. SURFACE IMPEDANCE BOUNDARY CONDITION

The penetration depth of a wave inside a (super)conducting
material is extremely small (e.g. 2µm for copper for a plane
wave at 1GHz and 39nm for superconducting niobium) com-
pared to the size of the whole simulated structure (e.g. 103mm
for a TESLA cavity). Therefore, a volume based numerical
method requires a large number of mesh elements in order
to resolve the penetration depth. Instead, a surface impedance
boundary condition (SIBC) can be applied to avoid meshing
the highly conductive parts. The central part of an SIBC is an
operator S that relates (exactly or approximately) the magnetic
and electric fields at the conducting interface. Formally, the
SIBC reads:

n× h = S(e) on ∂Ω, (4)

2But below the critical temperature, where superconducting properties are
completely lost.



where h is the magnetic field, S the SIBC operator, Ω the
computational domain as depicted in Fig. 1, ∂Ω its boundary
and n its outwardly oriented normal vector.
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Fig. 1. Computational domain Ω and its boundary ∂Ω, at which a SIBC
models the highly conductive parts in grey.

In the case of a plane wave penetrating an infinite, flat and
homogeneous conductor, the SIBC operator reads [2]:

S(e) =

(√
µ0<(ω)

σ

)−1

e, (5)

which is also known as the Leontovich SIBC. It is worth
noticing that there exists higher-order operators taking the
interface curvature into account [2]. In any case, the SIBC
operator introduces a factor with the square root of the real
part of the angular frequency. As a consequence, the result-
ing eigenvalue problem is non-linear. The major difference
between a superconductor and a normal conductor is the
complex-valued conductivity (3).

V. NON-LINEAR EIGENVALUE SOLVER

The weak formulation of the cavity eigenvalue problem
reads [3]:∫

Ω

µ−1curl e · curl e′dΩ− ω2

∫
Ω

εe · e′dΩ

− ω
∫
∂Ω

S(e, ω) · e′d∂Ω = 0 ∀e′ ∈ H(curl ,Ω), (6)

where e′ is a vectorial test function and H(curl ,Ω) the
function space of square-integrable vector fields with square-
integrable curls over Ω. Because of the SIBC, it can be
directly noticed that (6) is a non-linear eigenvalue problem
with eigenpairs (ω, e). Equation (6) is solved by the contour-
integral method proposed in [4]. The algorithm samples (6) for
a number of angular frequencies ωi, chosen on a closed contour
C in the complex plane. By combining the calculated solutions,
a linear eigenvalue problem can be constructed, of which the
eigenvalues approximate the eigenvalues of (6) enclosed by C.

VI. VALIDATION

The algorithm and its implementation are validated by calcu-
lating the quality factor of the fundamental mode of a spherical
cavity with a radius of 100mm. The conductivity of the cavity
walls is ranging between 1015Ω−1m−1 and 100Ω−1m−1. The
problem is discretized with the finite element (FE) method
and Nédélec edge elements on a first-order tetrahedral mesh
with a uniform density of 10 mesh elements per radius. The
Leontovich operator (5) is used to model the conducting walls.
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Fig. 2. Quality factor of a spherical cavity with non-perfectly conducting
walls.

The computed results are then compared to the analytical
solution developed in [5], as depicted in Fig. 2. It is obvious
that even for relatively small conductivities, the FE model
exhibits an excellent accuracy, with a relative error of the order
of 0.2% in the range [1015, 103]Ω−1m−1. It is worth noticing
that since we use a straight mesh, the spherical geometry is
not well approximated, which limits the accuracy.

For the same cavity but made of superconducting niobium
and operated at 4K, a quality factor of Q = 2.33×109 for the
fundamental mode is found. By using a complex conductivity
in the analytical solution of [5], the FE result only deviates
from 0.2% from the reference solution.

VII. SUMMARY

This paper describes how conductors, with normal and su-
perconducting carriers, can be taken into account in eigenvalue
problems by exploiting a SIBC. This operator leads to a non-
linear eigenvalue problem, which is then solved by a contour
integral method. The overall algorithm is able to calculate lossy
eigenmodes up to a high accuracy.
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